
Technical Information

iTEMP HART® TMT182

Universal temperature Head transmitter for RTD, TC, resistance and voltage transmitters, HART® -protocol, for installation in a sensor head Form B

Application

- Temperature head transmitter with HART® -protocol for converting various input signals into an scalable
 4 to 20 mA analog output signal
- Input:
- Resistance thermometer (RTD)
- Thermocouple (TC)
- Resistance transmitter (Ω)
- Voltage transmitter (mV)
- HART[®] -protocol for front end unit or panel unit operation using the hand operating module (DXR275, DXR375) or PC (e. q. ReadWin[®] 2000 or FieldCare)

Your benefits

- Universal settings with HART® -protocol for various input signals
- Operation, visualisation and maintenance via PC, e. g. FieldCare operating software

- ullet 2 wire technology, 4 to 20 mA analog output
- High accuracy in total ambient temperature range
- Fault signal on sensor break or short circuit, presettable to NAMUR NE 43
- EMC to NAMUR NE 21, CE
- UL recognized component to UL 3111-1
- Marine approval
- CSA General Purpose
- Ex-Certification
 - ATEX Ex ia and dust zone 22 in compliance with EN 50281-1
 - FM IS
 - CSA IS
- SIL2 compliant
- Galvanic isolation
- Output simulation
- Min./max. process value indicator function
- Customer specific linearization
- Linearization curve match

Function and system design

Measuring principle

Electronic monitoring and conversion of input signals in industrial temperature measurement.

Measuring system

The iTEMP HART® TMT182 temperature head transmitter is a 2-wire transmitter with analog output. It has measurement input for resistance thermometers (RTD) in 2-, 3- or 4-wire connection, thermocouples and voltage transmitters. Setting up of the TMT182 is done using the HART® -Protocol with hand operating module (DXR275, DXR375) or PC (e.g. configuration software ReadWin® 2000 or FieldCare).

Input

Measured variableTemperature (temperature linear transmission behaviour), resistance and voltageMeasuring rangeDepending upon the sensor connection and input signal. The transmitter evaluates a number of different measurement ranges.

Type of input

	Туре	Measurement ranges	Min. measurement range		
	Pt100 Pt500 Pt1000 acc. to IEC 60751 (α = 0.00385) Pt100	-200 to 850 °C (-328 to 1562 °F) -200 to 250 °C (-328 to 482 °F) -200 to 250 °C (-238 to 482 °F) -200 to 649 °C (-328 to 1200 °F)	10 K (18 °F) 10 K (18 °F) 10 K (18 °F)		
	to JIS C1604-81 (α = 0.003916)	-200 to 649 C (-528 to 1200 F)	10 K (18 °F)		
Resistance thermometer (RTD)	Ni100 Ni500 Ni1000 acc. to DIN 43760 (α = 0.006180)	-60 to 250 °C (-76 to 482 °F) -60 to 150 °C (-76 to 302 °F) -60 to 150 °C (-76 to 302 °F)	10 K (18 °F) 10 K (18 °F) 10 K (18 °F)		
	 Connection type: 2-, 3- or 4-wire connection Software compensation of cable resistance possible in the 2 wire system (0 to 30 Ω) Sensor cable resistance max. 20 Ω per cable in the 3 and 4 wire system Sensor current: ≤ 0.2 mA Corrosion detection as per NAMUR NE 89 for Pt100 4-wire connection (optional for 'Advanced Diagnostic' version, see 'Product structure'). If corrosion detection is active, the response time is 2 s. 				
Resistance transmitter	Resistance $Ω$ 10 to 400 $Ω$ 10 to 2000 $Ω$ 10 $Ω$ 100 $Ω$				
Thermocouple (TC)	B (PtRh30-PtRh6) C (W5Re-W26Re) ¹⁾ D (W3Re-W25Re) ¹ E (NiCr-CuNi) J (Fe-CuNi) K (NiCr-Ni) L (Fe-CuNi) ²⁾ N (NiCrSi-NiSi) R (PtRh13-Pt) S (PtRh10-Pt) T (Cu-CuNi) U (Cu-CuNi) ² acc. to IEC 584 Part 1	0 to +1820 °C (32 to 3308 °F) 0 to +2320 °C (32 to 4208 °F) 0 to +2495 °C (32 to 4523 °F) -270 to +1000 °C (-454 to 1832 °F) -210 to +1200 °C (-346 to 2192 °F) -270 to +1372 °C (-454 to 2501 °F) -200 to +900 °C (-328 to 1652 °F) -270 to +1300 °C (-454 to 2372 °F) -50 to +1768 °C (-58 to 3214 °F) -50 to +1768 °C (-58 to 3214 °F) -270 to +400 °C (-454 to 752 °F) -200 to +600 °C (-328 to 1112 °F)	500 K (900 °F) 500 K (900 °F) 500 K (900 °F) 50 K (90 °F) 50 K (90 °F) 50 K (90 °F) 50 K (90 °F) 500 K (900 °F) 500 K (900 °F) 50 K (900 °F) 50 K (90 °F)		
	■ Cold junction accuracy: ± 1 K				
Voltage transmitters	Millivolt transmitter	-10 to 75 mV	5 mV		

1) acc. to ASTM E988

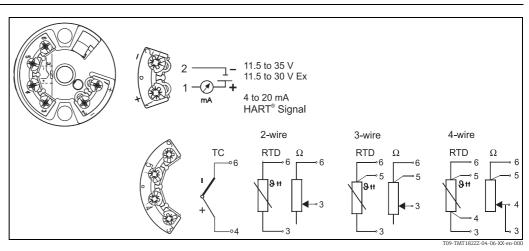
2) acc. to DIN 43710

Output

Output signal Analog 4 to 20 mA, 20 to 4 mA

Signal on alarm

- Underranging: linear drop to 3.8 mA
- Overranging: linear rise to 20.5 mA
- Sensor break; sensor short-circuit (not for thermocouples TC): \leq 3.6 mA or \geq 21.0 mA


Guaranteed values for setting "high alarm" ($\geq 21 \text{ mA}$):

- Standard model: > 21.5 mA
- Advanced diagnostic model: ≥ 22.5 mA

Load	max. (V _{Power supply} - 11.5 V) / 0.022 A (Current output)
Linearization/transmission behaviour	Temperature linear, resistance linear, voltage linear
Filter	1st order digital filter: 0 to 100 s
Galvanic isolation	U = 2 kV AC (input/output)
Min. current consumption	≤ 3.5 mA
Current limit	≤ 23 mA
Switch on delay	4 s (during power up $I_a = 3.8 \text{ mA}$)

Power supply

Electrical connection

Head transmitter terminal connections

For the unit operation via HART $^{\circ}$ protocol (terminals 1 and 2) a minimum load resistance of 250 Ω is necessary in the signal circuit!

Supply voltage	U_b = 11.5 to 35 V, polarity protection
----------------	---

Undervoltage detection

Optional for 'Advanced Diagnostic' version.

If the supply voltage is not sufficient to output the output signal corresponding to the measured temperature, a signal on alarm \leq 3.6 mA is generated. After approx. 2 to 3 s, the system makes another attempt to output the signal corresponding to the temperature.

Residual ripple

Allowable ripple $\rm U_{ss}\,\leq 3~V$ at $\rm U_b\,\geq 13~V,\,f_{max.}$ = 1 kHz

Performance characteristics

Response time

1 s (TC), 1.5 s (RTD)

Reference operating conditions

Calibration temperature: $+25 \,^{\circ}\text{C} (77 \,^{\circ}\text{F}) \pm 5 \,^{\circ}\text{K} (9 \,^{\circ}\text{F})$

Maximum measured error

The accuracy data are typical values and correspond to a standard deviation of \pm 3 σ (normal distribution), i.e. 99.8% of all the measured values achieve the given values or better values.

	Туре	Measurement accuracy ¹
Resistance thermometer RTD	Pt100, Ni100 Pt500, Ni500 Pt1000, Ni1000	0.2 K or 0.08% 0.5 K or 0.20% 0.3 K or 0.12%
Thermocouple TC	K, J, T, E, L, U N, C, D R, S B	typ. 0.5 K or 0.08% typ. 1.0 K or 0.08% typ. 1.4 K or 0.08% typ. 2.0 K or 0.08%

	Measurement range	Measurement accuracy ¹⁾
Resistance transmitter (Ω)	$\begin{array}{ccc} 10 \text{ to } 400 \Omega \\ 10 \text{ to } 2000 \Omega \end{array}$	$\pm 0.1 \Omega$ or 0.08% $\pm 1.5 \Omega$ or 0.12%
Voltage transmitters (mV)	-10 to 75 mV	± 20 μV or 0.08%

1) % is related to the adjusted measurement range. The value to be applied is the greater.

Physical input range of the sensors		
10 to 400 Ω	Polynom RTD, Pt100, Ni100	
10 to 2000 Ω	Pt500, Pt1000, Ni1000	
-10 to 75 mV	Thermocouple type: C, D, E, J, K, L, N, U	
-10 to 35 mV	Thermocouple type: B, R, S, T	

Influence of supply voltage

 \leq \pm 0.01%/V deviation from 24 V Percentages refer to the full scale value.

Influence of ambient temperature (temperature drift)

Total temperature drift = input temperature drift + output temperature drift

Effect on the accuracy when ambient temperature changes by 1 K (1.8 $^{\circ}$ F):		
Input 10 to 400Ω	typ. 0.0015% of measured value, min. 4 m Ω	
Input 10 to 2000 $\boldsymbol{\Omega}$	typ. 0.0015% of measured value, min. 20 m Ω	
Input -10 to 75 mV	typ. 0.005% of measured value, min. 1.2 μV	
Input -10 to 35 mV	typ. 0.005% of measured value, min. 0.6 μV	
Output 4 to 20 mA	typ. 0.005% of span	

Typical sensitivity of resistance thermometers:		
Pt: 0.00385 * R _{nominal} /K	Ni: 0.00617 * R _{nominal} /K	

Example Pt100: $0.00385 \times 100 \Omega/K = 0.385 \Omega/K$

Typical sensitivity of thermocouples:					
B: 10 μV/K	C: 20 µV/K	D: 20 µV/K	Ε: 75 μV/Κ	J: 55 μV/K	K: 40 μV/K
L: 55 µV/K	N: 35 µV/K	R: 12 μV/K	S: 12 μV/K	T: 50 μV/K	U: 60 µV/K

Example for calculating measured error for ambient temperature drift:

Input temperature drift $\Delta T = 10 \text{ K} (18 \,^{\circ}\text{F})$, Pt100, measuring range 0 to 100 °C (32 to 212 °F)

Maximum process temperature: 100 °C (212 °F)

Measured resistance value: 138.5 Ω (IEC 60751) at maximum process temperature Typical temperature drift in Ω : (0.0015% of 138.5 Ω) * 10 = 0.02078 Ω Conversion to Kelvin: $0.02078 \Omega / 0.385 \Omega / K = 0.05 K (0.09 °F)$

Influence of load	$\pm~0.02\%/100~\Omega$ Values refer to the full scale value
Long-term stability	\leq 0.1 K/year or \leq 0.05%/year Values under reference operating conditions. % refer to the set span. The highest value is valid.
Influence of cold junction	Pt100 DIN IEC 60751 Cl. B (internal cold junction with thermocouples TC)

Installation conditions

Installation instructions

- Installation angle: no limit
- Installation area:

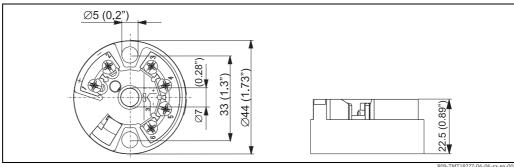
Terminal head accord. to DIN 43 729 Form B; TAF10 field housing

Environment conditions

Ambient temperature limits	-40 to +85 °C (-40 to 185 °F) for Ex-area, see Ex-certificate
Storage temperature	-40 to +100 °C (-40 to 212 °F)
Climate class	According to IEC 60 654-1, class C
Condensation	Permitted
Degree of protection	IP 00, IP 66 installed
Shock and vibration resistance	4g / 2 to 150 Hz as per IEC 60 068-2-6

Electromagnetic compatibility (EMC)

CE conformity


EMC to all relevant requirements of the IEC/EN 61326 - series and NAMUR Recommendation EMC (NE21). For details, refer to the Declaration of Conformity.

Maximum fluctuations during EMC- tests: < 1% of measuring span.

Interference immunity to IEC/EN 61326 - series, requirements for industrial areas Interference emission to IEC/EN 61326 - series, electrical equipment Class B

Mechanical construction

Design, dimensions

Dimensions of the head transmitter in mm (in)

TA		•	1	
v	v e	110	าท	IT.

approx. 40 g (1.4 oz)

Material

- Housing: PC
- Potting: PUR

Terminals

- Cable up to max. 1.75 mm² (secure screws)
- or 1.5 mm² with wire end ferrules
- eyelets for easy connection of a HART®-handheld terminal with alligator clips

Human interface

Display elements

No display elements are present directly on the temperature transmitter.

The measured value display can be called up using the ReadWin® 2000 or FieldCare PC software.

Operating elements

At the temperature transmitter no operating elements are available directly. The temperature transmitter will be configured by remote operation with the PC software ReadWin® 2000 or FieldCare.

Remote operation

Configuration

Hand operating module DXR275, DXR375 or PC with Commubox FXA191/FXA195 and operating software (ReadWin® 2000 or FieldCare).

Interface

PC interface Commubox FXA191 (RS232) or FXA195 (USB)

Configurable parameters

Sensor type and connection type, engineering units (°C/°F), measurement range, internal/external cold junction, compensation of wire resistance with 2-wire connection, failure mode, output signal (4 to 20/20 to 4 mA), digital filter (damping), offset, TAG + descriptor (8 + 16 characters), output simulation, customer specific linearization, min./max. process value indicator function

CE-Mark	The device meets the legal requirements of the EC directives. Endress+Hauser confirms that the device has been successfully tested by applying the CE mark.
Hazardous area approvals	For further details on the available Ex versions (ATEX, CSA, FM, etc.), please contact your nearest Endress+Hauser sales organisation. All relevant data for hazardous areas can be found in separate Ex documentation. If required, please request copies from us or your Endress+Hauser sales organisation.
Marine approval	For further details on the available "Type Approval Certificiates" (DNVGL, BV, etc.), please contact your nearest Endress+Hauser sales organisation. All relevant data for marine approval can be found in separate "Type Approval Certificiates". If required, please request copies from us or your Endress+Hauser sales organisation.
Other standards and guidelines	 IEC 60529: Degree of protection provided by housing (IP-Code) IEC 61010: Safety requirements for electrical measurement, control and laboratory use. IEC 61326: Electromagnetic compatibility (EMC requirements) NAMUR Standards working group for measurement and control technology in the chemical industry. (www.namur.de)
UL approval	UL recognized component (see www.ul.com/database, search for Keyword "E225237")
CSA GP	CSA General Purpose
Examination certificate	In compliance with WELMEC 8.8, valid only for the SIL-Mode: "Guide on the General and Administrative Aspects of the Voluntary System of Modular Evaluation of Measuring Instruments.

Ordering information

Detailed ordering information is available from the following sources:

- In the Product Configurator on the Endress+Hauser website: www.endress.com -> Click "Corporate" -> Select your country -> Click "Products" -> Select the product using the filters and search field -> Open product page -> The "Configure" button to the right of the product image opens the Product Configurator.
- From your Endress+Hauser Sales Center: www.addresses.endress.com

Product Configurator - the tool for individual product configuration

- Up-to-the configuration
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- $\ \ \, \blacksquare$ Ability to order directly in the Endress+Hauser Online Shop

Accessories

• Commubox FXA191 (RS232) or FXA195 (USB)

Order code: FXA191-... or FXA195-...

 PC-operating software: ReadWin® 2000 or FieldCare ReadWin® 2000 can be downloaded free of charge from the internet from the following address: www.endress.com/readwin

Hand operating module 'HART® Communicator DXR375'

Order code: DXR375-...

• DIN rail clip according to IEC 60715 (TH35) for head transmitter mounting

Order code: 51000856

• Field housing TAF10 for Endress+Hauser head transmitter, aluminum, IP 66, dimensions $W \times H \times D$: 100 x 100 x 60 mm (3.94" x 3.94" x 2.36")

Order code: TAF10-...

Documentation

- Operating short manual iTEMP HART® TMT182 (KA142R/09/a3)
- Additional documentation for use in explosion-hazardous areas:

ATEX II1G: XA006R/09/a3 ATEX II3G: XA011R/09/a3 ATEX II3D: XA027R/09/a3

- Operating short manual TAF10 Field housing (KA093R/09/a2)
- SIL: Functional safety manual TMT182 (SD006R/09/en)

www.addresses.endress.com

